If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m^2+16m+9=0
a = 1; b = 16; c = +9;
Δ = b2-4ac
Δ = 162-4·1·9
Δ = 220
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{220}=\sqrt{4*55}=\sqrt{4}*\sqrt{55}=2\sqrt{55}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-2\sqrt{55}}{2*1}=\frac{-16-2\sqrt{55}}{2} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+2\sqrt{55}}{2*1}=\frac{-16+2\sqrt{55}}{2} $
| -3(y-2)-5y=-2y(y+3) | | 9-j=5 | | 21w-16w+5w+8w-18=36 | | -2(v=2)+7=3(v+6) | | 8x+99=11+4x | | 12n-9n+8n-9n-n=43 | | 6z-2z-4z+z=12 | | 9x-21=0 | | 16z-z-13z-z=15 | | 4j-3j+4j=20 | | 4/5x-15=57 | | 15c-5c-4c-c-5=20 | | 21a+9=0 | | 6s-3s-s-1=5 | | 2.8x-15.7=-10.1 | | 9(x+1)=-3(x3+33) | | 8c-5c-2c=11 | | -65=-6j+-17 | | 6g+4g-9g+2g+1=7 | | 18z+5z-15z-7z=18 | | 16g+5g-16g=5 | | 1=d/2-1 | | 6t-t+2t+1=8 | | X×x+10=19 | | 4q-q-2q=6 | | 6q-5q+2=14 | | -3.5x+1.16=5x-1.6 | | A=×-y-2 | | 18d-16d+5=11 | | 57.99+0.11d=58.32 | | 16s-16s+6s=12 | | 57.99+0.11d=58.21 |